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Abstract— With the prevalence of RGB-D cameras,
multi-modal video data have become more available for human
action recognition. One main challenge for this task lies in how
to effectively leverage their complementary information. In this
work, we propose a Modality Compensation Network (MCN)
to explore the relationships of different modalities, and boost
the representations for human action recognition. We regard
RGB/optical flow videos as source modalities, skeletons as
auxiliary modality. Our goal is to extract more discriminative
features from source modalities, with the help of auxiliary
modality. Built on deep Convolutional Neural Networks (CNN)
and Long Short Term Memory (LSTM) networks, our model
bridges data from source and auxiliary modalities by a modality
adaptation block to achieve adaptive representation learning,
that the network learns to compensate for the loss of skeletons
at test time and even at training time. We explore multiple
adaptation schemes to narrow the distance between source and
auxiliary modal distributions from different levels, according
to the alignment of source and auxiliary data in training.
In addition, skeletons are only required in the training phase.
Our model is able to improve the recognition performance with
source data when testing. Experimental results reveal that MCN
outperforms state-of-the-art approaches on four widely-used
action recognition benchmarks.

Index Terms— Modality compensation, multi-modal, action
recognition.

I. INTRODUCTION

RECOGNITION of human actions is quite an important
yet fundamental task in video analytics. Human action

recognition technology is required for a wide range of applica-
tions, such as intelligent video surveillance, human-computer
interaction and robotics. However, action recognition remains
a challenging problem due to heterogeneous backgrounds, sub-
tle inter-class differentiation and large intra-class variations.
The key to the success of this task is enhancing the feature
discriminations of various actions.
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In the past decades, much work has been extensively studied
on human action recognition in RGB videos [1]. Besides the
methods relying on hand-crafted features [2], the two-stream
architecture based on deep networks is very popular and
successful in utilizing visual and temporal cues [3]. The spatial
and temporal streams are trained independently and the final
results are generated from the combination of each stream.
Due to the strong performance of the two-stream architecture
in action recognition, many works [4]–[6] following this
line focus more on improving feature discriminations, and
modelling the correlations between the spatial and temporal
structures. Our starting point is the notice of the following
difficulties in the task of action recognition based on the
two-stream architecture:

• With limited training samples, it is hard for the network to
extract invariant features and cover all kinds of possible
action variations, such as the differences in viewpoints
and scales.

• For the spatial stream, the extracted features can be
disturbed by cluttered backgrounds, which leads to the
mixture of human shapes and backgrounds.

• For the temporal stream, the background motions will
introduce noises in the temporal features and disturb the
learning process.

To address the above issues, we are inspired to seek other
cues for more effective and robust feature learning. With
the recent advent of low-cost depth cameras like Microsoft
Kinect [7] and the maturity of pose estimation technolo-
gies [8], there is an increasing amount of visual data con-
taining both color videos and 3D skeletons. These modalities
provide multiple cues that are complimentary, which inspires
us to explore their underlying common feature spaces. For
example, the skeletons are invariant to different viewpoints
and backgrounds. By exploring their common feature spaces,
we expect the network to learn invariant and robust features
from RGB/optical flow data.

As a high-level representation of human motion, biological
observations have suggested that humans can recognize actions
from skeleton data [9]. Skeleton-based representation is robust
to the variations of illumination and scales, and 3D skeletons
are even invariant to different viewpoints. Besides, it is able
to exclude backgrounds, provide clear motion patterns and
human posture descriptions. These advantages make skeleton
data as an attractive option for action recognition [10]–[13].
Nevertheless, the lack of appearance information results in
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the ambiguity for some actions whenever only observing
skeletons.

To overcome the lack of appearance for skeleton data, many
works integrate skeletons with other modalities to utilize com-
plementary information. Most previous works focus on feature
fusion, which is borrowed from the two-stream architecture.
A recent work developed a chained multi-stream approach [14]
built on Markov chain model to combine appearance, motion
and pose features. Other works tend to explore the common
high-level feature spaces from different modalities through
cross-modal learning [15], [16]. The work in [16] is one of
the early attempts. However, it only regularizes the feature
learning of the RGB stream with skeletons, without taking
optical flow into consideration. It is still underexplored that
how to use skeletons to compensate for features from optical
flow data. Besides, the modality adaptation under different
scenarios where the modalities are aligned or misaligned
should be explored.

In this work, we demonstrate that the skeleton-based rep-
resentation is a valuable supplement to color videos in action
recognition. We focus on adapting skeletons into modal spaces
learnt from RGB/optical flow data. We define RGB/optical
flow data as source data and skeletons as auxiliary data. Our
key idea is to borrow the advantages of auxiliary skeletons
and learn the compensated representations from source data.
For the spatial stream, guided by skeletons, the network
is encouraged to extract complementary features reflecting
motion and detailed appearance contexts from source data.
For the temporal stream, skeletons are used to supplement the
shape reference, and facilitate the motion feature learning to
exclude the motion noises in the backgrounds. Our work needs
auxiliary data provided in training, but only requires source
data in the testing phase. The main contributions of this paper
can be summarized as follows:

• We propose a novel Modality Compensation Network for
action recognition with adaptive representation learning,
which aims to align the distributions of source and
auxiliary data. Our model is able to extract compensated
and more discriminative features from source data for
action recognition.

• A modality adaptation block with residual feature learn-
ing is developed to bridge data from source and auxiliary
modalities. We show that the residual structure is more
effective in borrowing the advantages of auxiliary data.

• We explore different levels of modality adaptation
schemes, including domain-, category- and sample-level,
to cope with different scenarios according to the align-
ment of color and skeleton videos in the training data.

• We give comprehensive analysis on each component in
our model to better understand the modality adapta-
tion. Our approach is evaluated on the NTU RGB+D
dataset, the MSR 3D Daily Activity dataset, the UCF-
101 dataset and the JHMDB dataset, respectively. Exper-
imental results show that our proposed model outperforms
other state-of-the-art methods, thanks to more effective
spatial and temporal feature learning.

The remainder of the paper is organized as follows.
In Section II, we review the related works on action

recognition based on RGB videos or skeletons, and
multi-modal feature learning. In Section III, we first give an
overview of our baseline structure, and then introduce the pro-
posed Modality Compensation Network in detail. Experiments
and analysis are presented in Section IV. Finally, we conclude
our work in Section V.

II. RELATED WORK

A. RGB-Based Action Recognition

Action recognition on RGB-based videos has attracted many
research interests and been extensively studied in the past
decades. For action recognition with RGB as inputs, a key
branch is based on hand-crafted descriptors with decoupled
classifiers [2], [17]–[19], other methods try to jointly learn
features and classifiers. With the advent of deep learning,
neural networks are recently employed for action recognition
due to its powerful ability in learning robust feature repre-
sentations [3]–[6], [20]–[27]. The two-stream architecture [3]
is a pioneer work to employ deep convolutional network for
action recognition in videos, and has become a backbone of
many other approaches [4]–[6], [25], [27]–[29]. To address
the aggregation of spatial and temporal features, [6] explored
different score fusion schemes. The work in [5], [27] uti-
lized residual connections to allow spatiotemporal interaction
between to streams. Reference [22] used 3D convolutional
networks (C3D) to learn discriminative spatio-temporal pat-
terns jointly. Based on C3D, VLAD3 [30] was developed to
model long-range dynamic information. Besides, the works
in [23], [24] performed a hierarchical rank pooling to obtain
video representations, which have high capacity of capturing
informative frame-based feature representations. To further
extend the temporal support, great efforts have been made with
recurrent neural networks, learning how to integrate dynamics
overtime [21], [31]–[33]. Towards good practice, [4] presents
a Temporal Segment Network (TSN) and provides an effective
way to model long-term temporal structure, which has brought
the state-of-the-art to a new stage. However, the diversities
in viewpoints and backgrounds make it challenging to extract
discriminative features from RGB videos. In our work, we use
skeleton data, which are invariant in backgrounds and scales,
to encourage the network to learn more robust features from
color videos.

B. Skeleton-Based Action Recognition

Skeleton-based action recognition can be regarded as a
recognition task on time series for exploring spatio-temporal
patterns. Many traditional works focus on hand-crafted fea-
tures, which are generally based on the geometry relationships
and high order encodings [34]–[38]. Benefiting from the merits
of recurrent neural network for sequential data, some works
adopt recurrent neural network to explore the spatial and
temporal dynamics of skeletal data [10], [11], [13], [39]–[42].
With the help of convolutional neural networks, Ke et al. [43]
proposed a new representation for 3D skeleton data, which
transfers action recognition problem to the problem of image
classification.
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Fig. 1. The framework of Modality Compensation Network. Based on the two-stream architecture, a modality adaptation block is incorporated to compensate
the feature learning of source data with the help of auxiliary data. (We use superscripts ‘r’ and ‘f’ to indicate RGB and flow streams, respectively, which are
omitted in the text for simplicity.) Note that the LSTM with output Ai is not included in the testing phase.

Due to lack of appearance for skeleton data, many works
integrate skeletons with data from other modalities to uti-
lize the complementary information. A regularized LSTM
is proposed [16] to constrain the RGB feature space with
skeletons. But the relationship between skeletons and optical
flow data is overlooked in [16]. Shi and Tim [15] pro-
posed to achieve action recognition from depth sequences by
learning an RNN with privileged information from skeletons.
In addition, a chained multi-stream network [14] built on
Markov chain model is developed to integrate appearance,
motion and pose features. Liu et al. [44] jointly learned the
regression and classification network with multi-modal data for
action detection. Though the methods in [14], [15], [44], [45]
illustrate that the introduction of multiple cues improve the
performance for action analytics, they are limited by the strict
data requirements. Reference [15] requires aligned skeletons
and depth data in training. The models in [14] and [44] need
aligned color videos and 3D skeletons (or 2D poses) both
in training and testing. However, aligned multi-modal data
are not always reliable. It is desirable to utilize unaligned
data to facilitate feature learning. In our work, we explore
the relationship not only between RGB videos and skeletons,
but also between optical flow and skeleton data. Besides,
our model is flexible in that it can be trained with aligned
or unaligned multi-modal data. And only source modalities
(i.e., RGB and optical flow) are required at the test time.

C. Multi-Modal Feature Learning

Inspired by that different modalities provide complementary
information, cross-modal feature learning has been widely
studied these days. Much work tends to unify the distributions
of different feature spaces, by regularizing the representation
learning with data from other modalities [46], [47]. This can be
regarded as a domain adaptation problem, which aims to min-
imize the distribution between source and target domain [48],
[49]. Long et al. [50] introduced a deep adaptation network

to minimize the maximum mean discrepancy of the feature
to learn transferable features in high layers of the network.
However, the work in [51] claims that focusing only on the
shared representation leads to the ignorance of individual
characteristics. Following this line, Wang et al. [46] proposed
a multi-modal feature learning framework for RGB-D object
recognition to learn not only modal-specific patterns but also
modal-shared features. The similar idea is also employed in
the task of image segmentation [47], in which RGB and depth
data sources are correlated with multi-kernel maximum mean
discrepancy to discover common and specific features.

III. MODALITY COMPENSATION NETWORK

We propose a modality compensation network for action
recognition. Our network is designed to implicitly compensate
features from source modalties with the help of auxiliary data.
We propose a modality adaptation block to improve the ability
of adaptation learning with skeletons for action recognition.
A hierarchical modality adaptation scheme is further explored
for different data alignment cases to borrow information from
the auxiliary data more effectively. Fig. 1 shows the overall
architecture of our network. In the following, we first introduce
our baseline model, then we discuss the modality adaptation
block and our hierarchical modality adaptation scheme.

A. Baseline Model

Our backbone is built on the two-stream structure [3] as
shown in Fig. 1: the spatial stream leverages the appearance
information extracted from the RGB frames, while the tem-
poral stream utilizes the motion contexts from the stacked
horizontal and vertical optical flow data. The structure of each
stream mainly consists of a CNN and an LSTM. The CNN
is employed as an encoder to extract spatial features from
each input frame, and the information over time is collected
and integrated by the LSTM. Note that each stream is trained
independently and the final results for two streams are given
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by score fusion. Note, we use superscripts ‘r’ and ‘f’ in Fig. 1
to indicate RGB and optical flow streams, respectively. The
following illustrations for our proposed model are in terms of
a single stream and we omit the superscripts for simplicity.

1) Convolutional Neural Network: Compared with
hand-crafted features, convolutional networks have shown
superiority of interpreting and summarizing images. Given
the i -th video sequence Vi = {vi,t : t = 1, . . . , T } within a
batch, where vi,t is the frame at time step t , we extract spatial
features from the convolutional layers. Inspired by the pioneer
work [4], in experiments we employ features after global-
pool layer from the Inception with Batch Normalization
(BN-Inception) network [52]. Then each frame is represented
by a vector di,t ∈ R

1024. We then feed the sequence of CNN
features Di = {di,t : t = 1, . . . , T } to the following recurrent
layers.

2) Long Short Term Memory Network: To exploit the
temporal dependencies in video sequences, LSTM [53] is
employed to build our network. The self-connected architec-
ture allows LSTM to maintain and process temporal informa-
tion over time. At each time step, the network can choose to
read, write or reset the memory cell governed by the input
gate, forget gate and output gate.

3) Loss Function: To obtain the class predictions of Vi ,
the hidden states Hi = [hi,1, . . . , hi,T ] from LSTM layers is
accumulated and then mapped to a 1-of-C encoding vector
gi = [gi,1, . . . , gi,C ], representing the confidence scores of C
classes of actions

gi = Wg

(
1

T

T∑
t=1

hi,t

)
+ bg, (1)

where Wg and bg are the parameters of the last FC layer
before softmax. The predicted probability of the video Vi

being the c-th class is then normalized to p(c|Vi) =
egi,c /

∑C
j=1 egi, j (c = 1, . . . , C). Our goal for each stream is

to minimize the objective function as

L = −
n∑

i=1

C∑
c=1

li,c log p(c|Vi), (2)

where li,c = 1 if the i -th video sequence belongs to the c-th
class, and 0 otherwise.

For the final prediction, we obtain the probability for being
the c-th class from each stream by score fusion, which can be
formulated as

p∗(c|Vi) =
∑

m∈{r,f}
wm pm(c|Vi ), (3)

where the superscript m indicates which stream the score is
from. wm denotes the fusion weight, and

∑
m∈{r,f} wm = 1.

In our experiments, we set wm = 0.5 in two-stream fusion.

B. Adaptive Representation Learning

In the baseline model, the inter- and intra-class variations
result in the difficulties in extracting robust features to adapt
to different viewpoints and scales. Besides, the cluttered back-
grounds can easily introduce noises in the process of feature

learning. In this work, we propose an adaptive representation
learning method, for the purpose of compensating features
and exploring more discriminative representations from the
input frames. Thanks to the skeleton data, as a high level
representation invariant to viewpoints and backgrounds, we are
able to improve the feature learning of source data.

Modality Adaptation Block We design a modality adaptation
block to achieve adaptive representation learning. For each
stream, it consists of a main network and a residual subnet-
work [54] using recurrent layers. The idea of residual LSTM
networks has been explored in [55] and [56], both of which
demonstrates the effectiveness of the structure. Our network is
more similar to the staked LSTM [56]. Fig. 1 shows the detail
structure of our network. On one hand, the network is able to
keep the original information from source modalities. On the
other hand, the compensated features are attained from the
residual block through adaptive representation learning. The
basic formulation of the residual subnetwork is defined as

zl+1 = H(zl , {θ l}) + zl , (4)

where zl and zl+1 are the input and output vectors of the
layer considered, and H(·) is a nonlinear residual mapping
with parameters denoted as θ l . More specifically, we use an
LSTM layer and an FC layer as the residual mapping function
in the residual subnetwork, as shown in Fig. 1.

The insight of our adaptive representation learning is to
transform the source modal space to the auxiliary modal space,
so that the advantages in the auxiliary modality can also
be represented using data from source modalities, and then
to achieve modality compensation. Note that the modality
compensation is mainly achieved by the residual path, which
pushes the feature representation of source modalities be close
to the auxiliary skeleton features. For the features which are
present in the source modalities but absent in the auxiliary
modality, we use the skip connection in the residual block to
preserve them. For a given skeleton sequence Si = {si,t : t =
1, . . . , T }, we encode it into feature vectors Ai = {ai,t : t =
1, . . . , T } by a pre-trained LSTM network with parameters
{θa}, which can be formulated as Ai = fa(Si , {θa}). The
features from the source modalities are denoted as Ri = {ri,t :
t = 1, . . . , T }, which are extracted from the output of the
LSTM layer in the residual subnetwork as shown in Fig. 1.
We formulate it as Ri = fr (Vi , {θr }), where {θr } denotes the
parameters. With fixed {θa}, our goal is to learn features from
source modalities similar to the pre-defined auxiliary features
through optimizing the feature learning with {θr } in source
data. The optimization can be achieved by minimizing the
distance between the source modal space R̄ and the auxiliary
modal space Ā as follows

dist
(
R̄, Ā

)
. (5)

And it can be integrated with the loss function defined in
Eq. (2)

L = −
n∑

i=1

C∑
c=1

li,c log p(c|Vi) + λd, (6)
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TABLE I

REQUIREMENTS FOR MULTI-MODAL DATA OF EACH SCHEME

where d = dist
(
R̄, Ā

)
, and we use λ to balance the contri-

bution of the adaptive term. However, due to the huge gap
between skeletons and color videos, it is hard to define the
distance function dist (·) directly. Instead, we bridge the dif-
ferent modalities by adapting their contributions from different
levels, namely, domain-level adaptation (dD), category-level
adaptation (dC ), and sample-level adaptation (dS). Thus we
have d ∈ {dD, dC , dS} which will be discussed in the next
subsection.

C. Different Levels of Modality Adaptation

To calculate the distance of source and auxiliary modal
spaces and achieve modality adaptation, we consider two cases
here:

• General case: the modalities in the training data are not
aligned individually.

• Specific case: each color video in the training data is
provided with its corresponding skeleton sequence.

To deal with the different cases, we consider different
levels of modality adaptation, including domain-, category-
and sample-level adaptation. We summarize the requirements
for multi-modal data of each adaptation scheme in Table I.

1) Domain-Level Adaptation: Domain-level adaptation is
able to deal with the most general cases, regardless of
the alignment of source and auxiliary data. Inspired by
domain adaptation, we utilize Maximum Mean Discrepancy
(MMD) [57] to align domain-level distributions and handle
this modality adaptation problem. Given two sets of samples,
X = {xi }mx

i=1 and Y = {y j }my

j=1 generated from two distri-
butions, respectively, the squared MMD calculates the norm
of the difference between embeddings of the two different
distributions as

MMD2[X, Y ]
= �Ex [φ(x)] − Ey[φ(y)]�2

= 1

m2
x

mx∑
i=1

mx∑
i �=1

φ(xi )
T φ(xi � ) + 1

m2
y

my∑
j=1

my∑
j �=1

φ(y j )
T φ(y j �)

− 2

mx my

mx∑
i=1

my∑
j=1

φ(xi )
T φ(y j ), (7)

where φ is the explicit feature mapping function of MMD, mx

and my indicate the number of samples under the two different
distributions, respectively.

For the assessment of the distance between source and
auxiliary modal distributions, we consider the video-level rep-
resentations to compute the MMD distance. Given the encoded
features Ri from video Vi , and Ai from skeleton sequence Si ,
respectively, we generate the video-level feature descriptors

by r̂i = 1
T

∑T
t=1 ri,t for source data, and âi = 1

T

∑T
t=1 ai,t

for auxiliary data. Applying the associated kernel function
k(x, y) =< φ(x), φ(y) > in Eq. (7), the MMD distance
between the source and auxiliary data can be estimated as

dD = 1

n2

n∑
i=1

n∑
i �=1

k(âi , âi � ) + 1

n2

n∑
j=1

n∑
j �=1

k(r̂ j , r̂ j �)

− 2

n2

n∑
i=1

n∑
j=1

k(âi , r̂ j ), (8)

where n is the batch size, and we employ the linear kernel
k(x, y) = xT y in our work. In practice, for misaligned source
and auxiliary data (i.e., RGB and skeletons from different
video sources in training), Eq. (8) is optimized within a
mini-batch, to explore the underlying common spaces of two
misaligned modalities.

2) Category-Level Adaptation: Taking the category infor-
mation into account, the network is able to learn more specific
features guided by the skeleton data from the same category,
so it is easier to find the optimal. In our category-based MMD,
we only consider the distributions of the source and auxil-
iary data sharing the same label. More specifically, with the
video-level feature descriptors and a linear kernel, we use the
following function to calculate category-based MMD within a
mini batch with the size of n,

dC = 1

C

C∑
c=1

(
1

n2
c

nc∑
i=1

nc∑
i �=1

k(âi,c, âi �,c)

+ 1

m2
c

mc∑
j=1

mc∑
j �=1

k(r̂ j,c, r̂ j �,c)

− 2

ncmc

nc∑
i=1

mc∑
j=1

k(âi,c, r̂ j,c)

)
, (9)

where there are C classes of actions in total, nc and mc denote
the number of auxiliary and source modal samples of the c-th
class within the batch (i.e.,

∑C
c=1 nc = ∑C

c=1 mc = n), âi,c

and r̂ j,c are the auxiliary and source modal features of the
c-th class, respectively.

3) Sample-Level Adaptation: This scenario assumes that,
each color video of the source modality is provided with its
corresponding skeleton sequence. Intuitively, we can adopt
the sample-level adaptation on the granularity of each frame
or each video. However, despite that each input frame is
corresponding to a skeleton, optical flow images could be flat
whenever actions only involve subtle actions. Therefore, it is
not feasible to narrow the frame-wise distance between skele-
ton descriptions and features from flat optical flow images.
Meanwhile, no gain is observed when narrowing frame-wise
distance between RGB images and skeletons. It is probably
because the noises in skeleton data affect the feature learning
from RGB images. Instead, we use the video-level descriptions
mentioned in Eq. (8). Euclidean distance is employed to learn
adaptive features as follows

dS = 1

n

n∑
i=1

||âi − r̂i ||2, (10)



3962 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

where âi and r̂i are the video-level descriptors of the i -th
sample from the auxiliary and source modalities, respectively,
and n is the batch size.

IV. EXPERIMENT RESULTS

For evaluation, we conduct our experiments on the follow-
ing four datasets: the NTU RGB+D dataset [12], the MSR
3D Daily Activity Dataset [36], the UCF-101 dataset [58] and
the JHMDB dataset [59]. To further explore the effectiveness
of each component in our work, the ablation analysis is given.
Note that our model needs data from auxiliary modality to
enable better feature learning in training but only requires data
from source modalities when testing.

A. Datasets and Settings

1) NTU RGB+D Dataset (NTU): [12] is the largest action
recognition dataset with individually aligned multi-modal data
(i.e., skeletons, RGB, depth and infrared). This dataset consists
of 56880 video samples with more than 4 million frames.
There are 60 action types performed by 40 subjects, including
interactions with pairs and individual activities. Each skeleton
has 25 joints. The cross subject (CS) and cross view (CV) set-
tings are two protocols to evaluate the performance. Because
the resolution of RGB frames is 1920 × 1080, after resized to
224 × 224, the actors only hold a small place in the scene.
To avoid unnecessary degradation in performance, the original
RGB images are cropped to increase the resolution of subjects.
To crop RGB images, after mapping skeletons to RGB,
the min and max of the joint coordinates on the RGB video
(xmin , xmax, ymin , ymax) can be calculated. Then we crop the
region of [xmin − 250 : xmax + 250, ymin − 50 : ymax + 50],
increasing the resolution of actors. We also perform data
normalization [12] on skeletons to have position and view
invariance. To accelerate the extraction of optical flow [4],
the RGB and skeleton sequences are downsampled with a
stride as 5 over the temporal axis.

2) MSR 3D Daily Activity Dataset (MSR): [36] includes
16 action categories related to daily activities, such as playing
the guitar, using vacuum cleaner. This dataset provides skele-
tons (20 joints for each skeleton), RGB and depth images. The
total number of video sequences is 320 with image resolution
of 640 × 480. The first five actors are used for training and
others for testing, which follows the cross-subject setting.

3) UCF-101 Dataset (UCF-101): [58] consists of 101
action classes, over 13k fully-annotated action videos. Each
video snippet lasts 3-10 seconds and contains 100-300 frames,
with a fixed resolution of 320×240. This dataset is challenging
due to the large variations in action categories, viewpoints and
backgrounds. We follow the evaluation in [4] and report the
mean average accuracy over the three training/testing splits.
The videos are downsampled and processed in sequences
of 60 frames.

4) JHMDB Dataset (JHMDB): [59] is composed of
928 RGB videos for 21 actions such as brushing hair, run-
ning, shooting ball. Each clip contains 15-40 frames of size
320 × 240 and there are 31838 frames in total. The dataset is

TABLE II

SETTINGS FOR EACH DATASET

divided into three train/test splits, and evaluation averages the
results over the three splits.

5) Auxiliary Data Sources: The auxiliary data may come
from internal or external sources. We consider different aux-
iliary data sources for each dataset. For the NTU dataset,
we consider two settings here: (1) Using its own skeletons
as the auxiliary data, since the NTU dataset is provided with
aligned skeleton sequences and RGB videos. (2) Using exter-
nal skeletons from PKU Multi-Modality Dataset (PKU) [60].
There are 52 action labels in the PKU dataset, and all of
them are from the NTU dataset. Thus, the two datasets
are category-aligned and we are able to further evaluate
the effectiveness of domain-level and category-level adap-
tation schemes. For the MSR dataset, there are aligned
skeleton sequences and RGB videos, and its own skeletons
are used as auxiliary data. However, for the UCF-101 and
JHMDB datasets, there are no counterpart skeletons avail-
able. We also consider two settings here to compensate the
loss of skeletons: (1) Using external 3D skeletons from
the NTU (CV) dataset as their auxiliary data. (2) Using
2D poses extracted from each video with an off-the-shelf
pose extractor (i.e., OpenPose [61]) as their internal auxiliary
data. The summary for auxiliary data sources can be found
in Table II.

6) Implementation Details: We list the parameter settings
for each dataset in Table II. For the auxiliary data, we encode
the skeleton representations using a 1-layer LSTM with
N units, which is pretrained by the classification task. For
the NTU and MSR datasets, we use skeletons from the
corresponding training set to pre-train the auxiliary network.
For example, for NTU dataset, when under the setting of cross
view (CV), the auxiliary network is trained with skeletons
from the training set of NTU-CV. While under the setting
of cross subject (CS), we use skeletons from the training
set of NTU-CS to pre-train the auxiliary network. For UCF-
101 and JHMDB dataset using external sources as auxiliary
data, we simply use skeletons from the training set of NTU-CV
to achieve pretraining. And when using extracted poses as
auxiliary data, we use the poses from corresponding training
set to pre-train the auxiliary network. For the source data
(RGB and optical flow), we pretrain the BN-Inception network
in [4] on the four datasets, respectively. The features from
the layer of global pool in BN-Inception are extracted into
a 1024-dimensional vector and then fed into the recurrent
layers. We use a 2-layer LSTM network with N units in
each LSTM layer, including one in the residual subnetwork,
as shown in Fig. 2(a). The number of units in the FC
layer after the LSTM is also N . In practice, we fix the
parameters for encoding skeleton representations and train the
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Fig. 2. The structures of Res-LSTM and V-LSTM, respectively. The input
features are from CNN (omitted in the figure).

TABLE III

PERFORMANCE EVALUATION ON THE NTU AND MSR DATASETS IN
ACCURACY (%). THE SUPERSCRIPT ∗ DENOTES THE AUXILIARY

DATA ARE FROM EXTERNAL SOURCES. FOR THE NTU DATASET,
THE EXTERNAL SOURCE IS THE PKU DATASET

network for RGB/optical flow streams. Adam optimizer [62]
is adopted to automatically modulate the learning rate with
initial value as 0.001. Dropout [63] with a probability of 0.5 is
used to mitigate overfitting. For the selection of the hyper
parameter λ in Eq. (6), we approximate the weights per
the order of magnitude for each adaptation scheme. Then
we try different weights with a factor of 10 for the regu-
larizations and choose the best weight per the performance
on the validation set. Section IV-E further discusses the
effect of λ.

B. Effectiveness of Modality Adaptation

To validate the effectiveness of modality adaptation,
we compare the proposed adaptation schemes on the four
datasets, respectively. We conduct experiments with the con-
figurations targeting different cases in Table I as follows:

• Res-LSTM: Our baseline without using modality adap-
tation, as shown in Fig. 2(a).

• D-Res-LSTM: Res-LSTM with domain-level adaptation,
targeting the general and specific cases.

• C-Res-LSTM: Res-LSTM with category-level adapta-
tion, targeting the specific case.

• S-Res-LSTM: Res-LSTM with sample-level adaptation,
targeting the specific case.

• J-Res-LSTM: Res-LSTM with domain-, category-, and
sample-level adaptations jointly, targeting the specific
case.

Table III shows the results for the NTU and MSR datasets
on the modalities of RGB (RGB) and optical flow (Flow),

TABLE IV

PERFORMANCE EVALUATION WITH DIFFERENT AUXILIARY DATA
SOURCES IN TRAINING ON THE UCF-101 (SPLIT1) AND JHMDB

(SPLIT1) DATASETS IN ACCURACY (%). THE SUPERSCRIPT ∗
DENOTES THE AUXILIARY DATA ARE FROM EXTERNAL

SOURCES (i.e., THE NTU (CV) DATASET)

respectively. For the NTU dataset, when using external
auxiliary skeletons from the PKU dataset, we are able to apply
domain-level and category-level adaptation schemes since they
are category-aligned. Results show that both the adaptation
schemes (D-Res-LSTM∗ and C-Res-LSTM∗) can improve the
action recognition performance. Furthermore, the category-
level adaptation outperforms domain-level adaptation. When
using internal auxiliary data, it can be regarded as the specific
case. We evaluate the domain-, category- and sample-level
adaptation schemes, respectively. It is observed that the adap-
tive representation learning effectively boosts the results under
all settings with internal auxiliary data. Since D-Res-LSTM
and C-Res-LSTM adapt the feature learning in a coarse
level, they achieve inferior results than sample-level adapta-
tion. However, S-Res-LSTM narrows the distance between
source and auxiliary modal distributions in a finer granularity.
Compared with Res-LSTM, S-Res-LSTM brings about 2-3%
improvement on the NTU dataset. We also notice that the
jointly adaption scheme J-Res-LSTM achieves comparable
performance with S-Res-LSTM. It is mainly because S-Res-
LSTM achieves the modality adaptation in the finest granular-
ity. The distance between different categories and domains are
also narrowed after sample-level adaptation. Thus, the training
with jointly domain-, category-, and sample-level adaptation
schemes does not bring more improvement. For the MSR
dataset, we adopt different levels of adaptation schemes.
Compared with baseline Res-LSTM, S-Res-LSTM improves
the results on RGB and optical flow by 6.9% and 5.6%,
respectively.

Table IV shows the results for the UCF-101 and JHMDB
datasets with different auxiliary data sources. Note Res-LSTM
is our baseline without using any auxiliary data. When
using 3D skeletons from the NTU (CV) dataset, it can be
regarded as the general case since the color videos are not
aligned with skeletons. We use the domain-level adapta-
tion on these two datasets (D-Res-LSTM∗). Thanks to the
introduction of adaptive representation learning guided by
additional skeletons, the common spaces between two dif-
ferent modalities are explored. Thus, we are able to take
advantage of the complementary information and improve
the feature learning even if the two modalities are not
aligned. The results of D-Res-LSTM∗ are improved about
1%-2% compared with the baseline Res-LSTM on both
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Fig. 3. Examples from the UCF-101 dataset: (a) rafting, (b) pommel horse.
It is challenging to extract high-quality poses with [61] due to cluttered
backgrounds and occlusions.

datasets. When using 2D poses extracted with [61], it can
be regarded as the specific case and we are able to apply
different levels of modal adaptation. The aligned poses provide
much more specific guidance. It is observed that on the
JHMDB dataset, the sample-level adaptation brings 7.0% and
3.3% improvement on RGB and optical flow, respectively.
However, on the UCF dataset, the cluttered backgrounds
and occlusions make it challenging to extract high-quality
human poses, as shown in Fig. 3. It is less satisfactory to
use extracted poses as auxiliary data. Besides, similar as
Table III, the jointly adaptation scheme does not help boost the
performance.

C. Effectiveness of Residual Subnetwork

The design of our residual subnetwork in Res-LSTM is
motivated by two aspects: (1) The skip connection in the
residual block aims to keep the original information from
the source modalities. (2) The residual path is appended to
incorporate compensated information, which is adapted from
the auxiliary modality. To explore the effectiveness of the
residual subnetwork and support our motivation, we compare
Res-LSTM with another vanilla LSTM structure V-LSTM,
as shown Fig. 2(b). There are N units for the LSTM layers
and the following FC layer, so the number of parameters in
V-LSTM is the same as Res-LSTM.

We conduct experiments on these two structures on the
four datasets, as shown in Fig. 4. For V-LSTM, the modal-
ity adaptation is applied after the second LSTM layer.
We adopt sample-level adaptation (S-V-LSTM) for the NTU
and MSR datasets, and the domain-level scheme (D-V-LSTM)
for the UCF-101 and JHMDB datasets. We obtain sim-
ilar performance on V-LSTM and Res-LSTM when not
using modality adaptation. However, once integrated with
modality adaptation, better results are obtained with the
architecture of Res-LSTM. The results illustrate that the
residual subnetwork is more powerful and efficient in com-
pensating auxiliary information for source data. Besides,
our proposed modality adaptation is able to improve the
performance with V-LSTM in most cases, which further
confirms the effectiveness of the adaptive representation
learning.

TABLE V

COMPARISONS ON NTU IN ACCURACY (%)

TABLE VI

COMPARISONS ON MSR IN ACCURACY (%)

TABLE VII

COMPARISONS ON UCF-101 IN ACCURACY (%). THE SUPERSCRIPT ∗
DENOTES AUXILIARY DATA ARE FROM EXTERNAL

SOURCES (i.e., THE NTU (CV) DATASET)

D. Comparisons to Other State-of-the-Arts

We compare our final results with other state-of-the-art
methods, as shown in Table V, Table VI, Table VII, and
Table VIII. For the specific case, we use S-Res-LSTM
as our final model. And for the general case, we regard
D-Res-LSTM∗ as our final model. In our work, the final
prediction for a given video is generated by average score
fusion of multiple streams [6].

To give a fair comparison, we mark the modalities
contributed in the testing phase in Table V, Table VI,
Table VII, and Table VIII. The involved modalities include
3D skeletons (ske.), 2D poses extracted with [61] (poses),
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Fig. 4. Performance comparisons with different structures on different datasets. We apply sample-level adaptation on the NTU (CS) and MSR datasets,
domain-level adaptation on the UCF-101 (split1) and JHMDB (split1) datasets, respectively. Our results show that modal adaptation can effectively improve
the performance on Res-LSTM and V-LSTM. And the residual architecture is more efficient in compensating the feature learning and achieves better results.

TABLE VIII

COMPARISONS ON JHMDB IN ACCURACY (%). THE SUPERSCRIPT ∗
DENOTES AUXILIARY DATA ARE FROM EXTERNAL

SOURCES (i.e., THE NTU (CV) DATASET)

RGB videos (RGB) and optical flow data (Flow). We also
show our recognition results only with skeleton/pose data
using a 1-layer LSTM (LSTM). Our baseline results include
Res-LSTM and Compensate-Train-Test Res-LSTM. For Res-
LSTM, only source modalities are employed in the testing
phase without any modal adaptation. For Compensate-Train-
Test Res-LSTM, skeletons/poses are used in the testing phase
and average fusion is employed to fuse RGB, optical flow and
skeleton/pose streams.

In Table V and Table VI, our model S-Res-LSTM not only
outperforms the baseline Res-LSTM, but also achieves higher
performance than that even skeletons/poses are available in
testing (Compensate-Train-Test Res-LSTM). It illustrates that
our modal adaption scheme effectively compensates for the
loss of skeletons at test time. In the meanwhile, we also
find that fusing the results of LSTM and S-Res-LSTM,
denoted as Compensate-Train-Test S-Res-LSTM, can further
improve the performance. Furthermore, both S-Res-LSTM and
Compensate-Train-Test S-Res-LSTM compare favorably to the
existing methods on the NTU and MSR datasets. Note that we

implement P-CNN [65] and TSN [4] with the code provided
by the authors. The result under the cross-view setting on the
NTU dataset is not given in [14].

In Table VII and Table VIII, we report results over three
splits on the UCF-101 and JHMDB datasets, respectively.
On the UCF-101 dataset, as indicated in Table IV and Fig. 3,
the inaccurate poses lead to poor action classification results,
only 36.0% with LSTM. They also fail to improve the feature
learning with S-Res-LSTM. However, D-Res-LSTM∗, which
is the two-stream fusion result with skeletons in NTU-CV
as auxiliary data, outperforms Compensate Train-Test Res-
LSTM and S-Res-LSTM. On the JHMDB dataset, we obtain
similar results with D-Res-LSTM∗ and S-Res-LSTM, though
they use different auxiliary data sources. And both of them
effectively improve the baseline results. Compared with other
state-of-the-arts, our model achieves comparable performance
on the UCF-101 dataset and outperforms other methods on
the JHMDB dataset. To give a fair comparison, we only
compare our results using RGB and optical flow at the test
time on both datasets. Note that the action categories in
the UCF-101 dataset are very diverse, including sky div-
ing, rafting, surfing, etc., which are very different from
those in the NTU dataset, such as shaking hands, drink-
ing, eating, etc. We believe that training with skeletons
in more relevant categories will bring further improvement
on the UCF-101 dataset through the proposed modality
adaption scheme.

E. Discussion

1) Parameter Analysis: The hyper parameter λ in Eq. (6)
controls the degree of adaptive feature learning. To choose
the scalar λ, we first observe the order of each item in the
loss function, from which we roughly get the range of λ,
then we vary different values to analyze its effect. The higher
λ forces the network to narrow the distance between the
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Fig. 5. Empirical study on the hyper parameter λ of different modal
adaptation schemes on the NTU (CS) dataset.

source and auxiliary modalities as close as possible. However,
due to the noises in the skeleton data, the features from
the source modality could be interrupted and thus influence
the performance. Moreover, with a lower λ, the network
only borrows little complementary information from additional
skeletons. Therefore, we study the effect of λ in Fig. 5 to seek
the optimal. Note that λ = 0 indicates the Res-LSTM results
when no modality adaptation is adopted, which is marked
by horizontal black dash lines. We show the performance on
validation and test sets with various λ in different levels of
modality adaptation on the NTU (CS) dataset, respectively.
In practice, the optimal λ is selected from the best results
on the validation set. However, as shown in Fig. 5, different
weights do not significantly influence the results. With λ in the
proper range, different levels of adaptation bring improvement
on the results consistently.

2) Classification Analysis: In Fig. 6, we list the histograms
of the gain of S-Res-LSTM with respect to Res-LSTM. The
gain values are calculated based on average precision for each
class in the NTU dataset under the cross view setting. It is
observed that for most classes, S-Res-LSTM outperforms the
baseline. In the meantime, for RGB, we find the actions related
with motions are improved much more, such as clapping

Fig. 6. Gain on average precision of S-Res-LSTM with respect to Res-LSTM
on the NTU (CV) dataset. The index of the horizontal axis denotes the action
ID provided in [12].

(#10), putting the palms together (#39), saluting (#38). With
the auxiliary skeletons, our MCN is able to compensate source
RGB features with motion information, increasing the dis-
criminations of the actions. Meanwhile, the main contribution
of skeleton data to optical flow is to provide extra posture
information in actions where static frames are predominant,
such as pointing to something with finger (#31), nausea (#48)
and writing (#12). These actions with subtle optical flow are
improved significantly with posture information compensated.

3) Visualizations of Adapted Features: To better understand
the proposed modality adaptation method, we visualize the
source and auxiliary feature vectors (r̂i and âi in Section III)
that are learned from different modality adaptation levels. The
visualizations are achieved with t-SNE techniques, as shown
in Fig. 7. We randomly select five classes from the testing data
in the NTU (CV) dataset. We denote different action classes
with different colors. The features from source modalities
are represented with triangles and those from skeletons are
represented with squares. The source modality of the figures in
the first row is RGB and the second row is optical flow. It is
noticed that with a finer adaptation level, the features from
source and auxiliary modalities become “closer” in the fea-
ture space. Compared with the distributions without modality
adaptation, the source and auxiliary features after domain-
or category-level adaptation stay tighter in general. How-
ever, when sample-level adaptation is adopted, the features
in different modalities but sharing the same action class get
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Fig. 7. The t-SNE results of source and auxiliary features with different modality adaptation levels (top: RGB & skeletons, bottom: optical flow & skeletons).
We use the adapted features from the residual blocks in the Res-LSTM, D-Res-LSTM, C-Res-LSTM and S-Res-LSTM, respectively. Five classes are randomly
selected from the testing data of the NTU (CV) dataset for visualization. Different colors denote different action classes. The features from source modalities
are represented as triangles while those from skeletons are represented as squares.

together, which is able to further increase the discriminative
performance.

V. CONCLUSION

In this paper, we present a novel model for action recogni-
tion, Modality Compensation Network (MCN). Taking advan-
tage of the auxiliary modality, we aim to compensate the
feature learning in source modalities by adaptive represen-
tation learning. The modality adaptation block is developed
to borrow the complementary information from the auxiliary
modality, by narrowing the distance of source and auxiliary
modal distributions. Adaptation schemes in different levels
are employed according to the alignment of the training
data. The ablation study illustrates the effectiveness of each
component in our proposed network. Comprehensive analysis
is given to better understand the modality adaptation scheme.
Experiments demonstrate our model consistently improves the
action recognition performance on four different datasets, and
achieves remarkable performance compared with other state-
of-the-arts.
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